Better bounds on the rate of non-witnesses of Lucas pseudoprimes

David Amirault
Mentor David Corwin
PRIMES conference

May 16, 2015

Starting Small

Theorem (Fermat's Little Theorem)
Let a be an integer and n prime with $n \nmid a$. Then

$$
a^{n-1} \equiv 1(\bmod n) .
$$

Starting Small

Theorem (Fermat's Little Theorem)
Let a be an integer and n prime with $n \nmid a$. Then

$$
a^{n-1} \equiv 1(\bmod n) .
$$

Theorem (Miller-Rabin)

Write $n-1=2^{k} q$ with q odd. One of the following is true:

$$
a^{q} \equiv 1(\bmod n),
$$

or for some m with $0 \leq m<k$,

$$
a^{2^{m} q} \equiv-1(\bmod n) .
$$

Starting Small

Running a Test

Put $1517-1=2^{2} \cdot 379$. Try $a=2$:

Starting Small

Running a Test

Put $1517-1=2^{2} \cdot 379$. Try $a=2$:

- $a^{2^{0} \cdot 379} \equiv 2^{379} \equiv 923 \not \equiv \pm 1(\bmod 1517)$.
- $2^{2^{1 \cdot} \cdot 379} \equiv 2^{758} \equiv 892 \not \equiv-1(\bmod 1517)$.

Starting Small

Running a Test
Put $1517-1=2^{2} \cdot 379$. Try $a=2$:

- $2^{20} 379 \equiv 2^{379} \equiv 923 \not \equiv \pm 1(\bmod 1517)$.
- ${a^{21}}^{2^{\cdot 379}} \equiv 2^{758} \equiv 892 \not \equiv-1(\bmod 1517)$.

Thus, 1517 is not prime ($1517=37 \cdot 41$).

Generalizing Integers

Definition

A quadratic integer is a solution to an equation of the form

$$
x^{2}-P x+Q=0
$$

with P, Q integers.

Generalizing Integers

Definition

A quadratic integer is a solution to an equation of the form

$$
x^{2}-P x+Q=0
$$

with P, Q integers.

Theorem

Let $D=P^{2}-4 Q$. The set of all quadratic integers in the field $\mathbb{Q}[\sqrt{D}]$ form a ring, denoted by $\mathcal{O}_{\mathbb{Q}[\sqrt{D}]}$.

Generalizing Integers

Quadratic Integer Rings

- $D=-4$. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^{2}+1=0$, for which $P^{2}-4 Q=-4$.

Generalizing Integers

Quadratic Integer Rings

- $D=-4$. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^{2}+1=0$, for which $P^{2}-4 Q=-4$.
- $D=-5$. Here, $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} \cong \mathbb{Z}[\sqrt{-5}]$.

Generalizing Integers

Quadratic Integer Rings

- $D=-4$. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^{2}+1=0$, for which $P^{2}-4 Q=-4$.
- $D=-5$. Here, $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} \cong \mathbb{Z}[\sqrt{-5}]$.
- $D=5$. In this real case, $\mathcal{O}_{\mathbb{Q}[\sqrt{5}]} \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

Lucas Primality Test

Theorem

Let P, Q be integers such that $D=P^{2}-4 Q \neq 0$. Let τ be the quotient of the two roots of $x^{2}-P x+Q$. For n an odd prime not dividing $Q D$, put $n-(D / n)=2^{k} q$ with q odd. One of the following is true:

$$
\tau^{q} \equiv 1(\bmod n)
$$

or for some m with $0 \leq m<k$,

$$
\tau^{2^{m} q} \equiv-1(\bmod n)
$$

Lucas Primality Test

Definition

If n is a composite integer for which $\tau^{q} \equiv 1(\bmod n)$ or $\tau^{2^{m} q} \equiv-1(\bmod n)$ with $0 \leq m<k$, then we call n a strong Lucas pseudoprime, or slpsp, with respect to P and Q.

Lucas Primality Test

Definition

If n is a composite integer for which $\tau^{q} \equiv 1(\bmod n)$ or $\tau^{2^{m} q} \equiv-1(\bmod n)$ with $0 \leq m<k$, then we call n a strong Lucas pseudoprime, or slpsp, with respect to P and Q.

Theorem (Arnault)
Define

$$
S L(D, n)=\#\left\{(P, Q) \left\lvert\, \begin{array}{l}
0 \leq P, Q<n, \quad P^{2}-4 Q \equiv D(\bmod n) \\
\operatorname{gcd}(Q D, n)=1, \quad n \text { is } \operatorname{slpsp}(P, Q)
\end{array}\right.\right\}
$$

$S L(D, n) \leq \frac{4}{15} n$ unless $n=9$ or n is of the form $\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$, a product of twin primes with q_{1} odd.

Better Bounds

Theorem
$S L(D, n) \leq \frac{1}{6} n$ unless one of the following is true:

Better Bounds

Theorem

$S L(D, n) \leq \frac{1}{6} n$ unless one of the following is true:

- $n=9$ or $n=25$,
- $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$,
- $n=\left(2^{k_{1}} q_{1}+\varepsilon_{1}\right)\left(2^{k_{1}+1} q_{1}+\varepsilon_{2}\right)$,
- $n=\left(2^{k_{1}} q_{1}+\varepsilon_{1}\right)\left(2^{k_{1}} q_{2}+\varepsilon_{2}\right)\left(2^{k_{1}} q_{3}+\varepsilon_{3}\right), \quad q_{1}, q_{2}, q_{3} \mid q$,

Better Bounds

Theorem

$S L(D, n) \leq \frac{1}{6} n$ unless one of the following is true:

- $n=9$ or $n=25$,
- $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$,
- $n=\left(2^{k_{1}} q_{1}+\varepsilon_{1}\right)\left(2^{k_{1}+1} q_{1}+\varepsilon_{2}\right)$,
- $n=\left(2^{k_{1}} q_{1}+\varepsilon_{1}\right)\left(2^{k_{1}} q_{2}+\varepsilon_{2}\right)\left(2^{k_{1}} q_{3}+\varepsilon_{3}\right), \quad q_{1}, q_{2}, q_{3} \mid q$,
where ε_{i} is determined by the Jacobi symbol $\left(D / p_{i}\right)$ such that p_{i} is a prime factor of n.

Better Bounds

Suppose we wish to determine that n is prime to a probability of $1-2^{-128}$.

Better Bounds

Suppose we wish to determine that n is prime to a probability of $1-2^{-128}$.

- $\log _{4 / 15}\left(2^{-128}\right) \approx 67$.
- $\log _{1 / 6}\left(2^{-128}\right) \approx 50$.

Better Bounds

Suppose we wish to determine that n is prime to a probability of $1-2^{-128}$.

- $\log _{4 / 15}\left(2^{-128}\right) \approx 67$.
- $\log _{1 / 6}\left(2^{-128}\right) \approx 50$.

17 fewer trials are required using the improved bound.

Solving Exceptions

Quiz!
$\sqrt{961}=$

Solving Exceptions

Quiz!
$\sqrt{961}=31$.

Solving Exceptions

Quiz!

$\sqrt{961}=31$.
Let x_{0} be a guess of a root of the function f. A sequence of better approximations x_{n} is defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Solving Exceptions

Newton's Method

Consider the case $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$. Does 2627 factor in this form?

Solving Exceptions

Newton's Method

Consider the case $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$. Does 2627 factor in this form?
Write $x=2^{k_{1}} q_{1}$, so $2627=(x-1)(x+1)=x^{2}-1$ and $x^{2}-2628=0$.

Solving Exceptions

Newton's Method

Consider the case $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$. Does 2627 factor in this form?
Write $x=2^{k_{1}} q_{1}$, so $2627=(x-1)(x+1)=x^{2}-1$ and $x^{2}-2628=0$.

- $x_{0}=40$.
- $x_{1}=40-\frac{40^{2}-2628}{2.40}=52.85$.
- $x_{2}=x_{1}-\frac{x_{1}^{2}-2628}{2 x_{1}}=51.28782$.
- $x_{3}=x_{2}-\frac{x_{2}^{2}-2628}{2 x_{2}}=51.26403$.

Solving Exceptions

Newton's Method

Consider the case $n=\left(2^{k_{1}} q_{1}-1\right)\left(2^{k_{1}} q_{1}+1\right)$. Does 2627 factor in this form?
Write $x=2^{k_{1}} q_{1}$, so $2627=(x-1)(x+1)=x^{2}-1$ and $x^{2}-2628=0$.

- $x_{0}=40$.
- $x_{1}=40-\frac{40^{2}-2628}{2.40}=52.85$.
- $x_{2}=x_{1}-\frac{x_{1}^{2}-2628}{2 x_{1}}=51.28782$.
- $x_{3}=x_{2}-\frac{x_{2}^{2}-2628}{2 x_{2}}=51.26403$.
$\sqrt{2628}=51.26402$.

Importance

- Primality testing is highly applicable to cryptography.

Importance

- Primality testing is highly applicable to cryptography.
- Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.

Importance

- Primality testing is highly applicable to cryptography.
- Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.
- Factoring a large semiprime takes more time than multiplying its two prime factors.

Future Research

- The Baillie-PSW primality test combines a Miller-Rabin test using $a=2$ with a strong Lucas primality test.

Future Research

- The Baillie-PSW primality test combines a Miller-Rabin test using $a=2$ with a strong Lucas primality test.
- No known composite passes this test.

Future Research

- The Baillie-PSW primality test combines a Miller-Rabin test using $a=2$ with a strong Lucas primality test.
- No known composite passes this test.
- What must be true of such n ?

Acknowledgments

Huge Thanks To:

- David Corwin, my mentor
- Stefan Wehmeier, for suggesting the project
- Dr. Tanya Khovanova, head mentor
- MIT PRIMES
- And of course, my parents for providing transportation and support throughout the project!

