Better bounds on the rate of non-witnesses of Lucas pseudoprimes

David Amirault Mentor David Corwin PRIMES conference

May 16, 2015

David Amirault

Lucas pseudoprimes

May 16, 2015 1 / 14

Starting Small

Theorem (Fermat's Little Theorem)

Let a be an integer and n prime with $n \nmid a$. Then

 $a^{n-1} \equiv 1 \pmod{n}.$

Starting Small

Theorem (Fermat's Little Theorem)

Let a be an integer and n prime with $n \nmid a$. Then

$$a^{n-1} \equiv 1 \pmod{n}.$$

Theorem (Miller-Rabin)

Write $n - 1 = 2^k q$ with q odd. One of the following is true:

 $a^q \equiv 1 \pmod{n},$

or for some m with $0 \le m < k$,

$$a^{2^m q} \equiv -1 \pmod{n}.$$

イロト イヨト イヨト

Running a Test Put $1517 - 1 = 2^2 \cdot 379$. Try a = 2:

David Amirault

May 16, 2015 3 / 14

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Running a Test Put $1517 - 1 = 2^2 \cdot 379$. Try a = 2: • $a^{2^0 \cdot 379} \equiv 2^{379} \equiv 923 \not\equiv \pm 1 \pmod{1517}$. • $a^{2^1 \cdot 379} \equiv 2^{758} \equiv 892 \not\equiv -1 \pmod{1517}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Running a Test Put $1517 - 1 = 2^2 \cdot 379$. Try a = 2: • $a^{2^0 \cdot 379} \equiv 2^{379} \equiv 923 \not\equiv \pm 1 \pmod{1517}$. • $a^{2^1 \cdot 379} \equiv 2^{758} \equiv 892 \not\equiv -1 \pmod{1517}$. Thus, 1517 is not prime $(1517 = 37 \cdot 41)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Generalizing Integers

Definition

A quadratic integer is a solution to an equation of the form

$$x^2 - Px + Q = 0$$

with P, Q integers.

- **(())) (())) ())**

Generalizing Integers

Definition

A quadratic integer is a solution to an equation of the form

$$x^2 - Px + Q = 0$$

with P, Q integers.

Theorem

Let $D = P^2 - 4Q$. The set of all quadratic integers in the field $\mathbb{Q}\left[\sqrt{D}\right]$ form a ring, denoted by $\mathcal{O}_{\mathbb{Q}\left[\sqrt{D}\right]}$.

Quadratic Integer Rings

• D = -4. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^2 + 1 = 0$, for which $P^2 - 4Q = -4$.

Quadratic Integer Rings

• D = -4. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^2 + 1 = 0$, for which $P^2 - 4Q = -4$.

•
$$D = -5$$
. Here, $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} \cong \mathbb{Z}[\sqrt{-5}]$.

E Sac

Quadratic Integer Rings

• D = -4. The ring of quadratic integers $\mathcal{O}_{\mathbb{Q}[\sqrt{-4}]}$ is the Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$. Notice $\pm i$ satisfy $x^2 + 1 = 0$, for which $P^2 - 4Q = -4$.

- D = -5. Here, $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]} \cong \mathbb{Z}\left[\sqrt{-5}\right]$.
- D = 5. In this real case, $\mathcal{O}_{\mathbb{Q}[\sqrt{5}]} \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

Let P, Q be integers such that $D = P^2 - 4Q \neq 0$. Let τ be the quotient of the two roots of $x^2 - Px + Q$. For n an odd prime not dividing QD, put $n - (D/n) = 2^k q$ with q odd. One of the following is true:

 $\tau^q \equiv 1 \pmod{n},$

or for some m with $0 \le m < k$,

 $\tau^{2^m q} \equiv -1 \pmod{n}.$

		.1 /			۰.
Ľ	avi	a⊬	١m	irau	Iτ

< ロト < 同ト < ヨト < ヨト

Lucas Primality Test

Definition

If *n* is a composite integer for which $\tau^q \equiv 1 \pmod{n}$ or $\tau^{2^m q} \equiv -1 \pmod{n}$ with $0 \le m < k$, then we call *n* a *strong Lucas pseudoprime*, or slpsp, with respect to *P* and *Q*.

Lucas Primality Test

Definition

If *n* is a composite integer for which $\tau^q \equiv 1 \pmod{n}$ or $\tau^{2^m q} \equiv -1 \pmod{n}$ with $0 \leq m < k$, then we call *n* a *strong Lucas pseudoprime*, or slpsp, with respect to *P* and *Q*.

Theorem (Arnault)

Define

$$SL(D, n) = \# \left\{ (P, Q) \middle| \begin{array}{l} 0 \le P, Q < n, \\ \gcd(QD, n) = 1, \end{array} \middle| \begin{array}{l} P^2 - 4Q \equiv D \pmod{n}, \\ n \text{ is } \operatorname{slpsp}(P, Q) \end{array} \right\}$$

 $SL(D, n) \leq \frac{4}{15}n$ unless n = 9 or n is of the form $(2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$, a product of twin primes with q_1 odd.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 $SL(D, n) \leq \frac{1}{6}n$ unless one of the following is true:

_			
1.1-	word.	America	
120	IVIU	Anna	
_			

イロト イヨト イヨト イヨト

 $SL(D, n) \leq \frac{1}{6}n$ unless one of the following is true:

•
$$n = 9$$
 or $n = 25$,
• $n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$,
• $n = (2^{k_1}q_1 + \varepsilon_1)(2^{k_1+1}q_1 + \varepsilon_2)$,

David Amirault

<ロ> (日) (日) (日) (日) (日)

 $SL(D, n) \leq \frac{1}{6}n$ unless one of the following is true:

•
$$n = (2^{k_1}q_1 + \varepsilon_1)(2^{k_1+1}q_1 + \varepsilon_2),$$

•
$$n = (2^{k_1}q_1 + \varepsilon_1)(2^{k_1}q_2 + \varepsilon_2)(2^{k_1}q_3 + \varepsilon_3), \quad q_1, q_2, q_3|q,$$

where ε_i is determined by the Jacobi symbol (D/p_i) such that p_i is a prime factor of n.

- 4 同 6 4 日 6 4 日 6

Suppose we wish to determine that *n* is prime to a probability of $1 - 2^{-128}$.

イロト イポト イヨト イヨト

- Suppose we wish to determine that *n* is prime to a probability of $1 2^{-128}$.
 - $\log_{4/15}(2^{-128}) \approx 67.$
 - $\log_{1/6}(2^{-128}) \approx 50.$

- Suppose we wish to determine that *n* is prime to a probability of $1 2^{-128}$.
 - $\log_{4/15}(2^{-128}) \approx 67.$
 - $\log_{1/6}(2^{-128}) \approx 50.$

17 fewer trials are required using the improved bound.

 $\frac{\text{Quiz!}}{\sqrt{961}} =$

David Amirault

<ロ> (日) (日) (日) (日) (日)

 $\frac{\text{Quiz!}}{\sqrt{961}} = 31.$

David Amirault

<ロ> (日) (日) (日) (日) (日)

Quiz!

 $\sqrt{961} = 31.$

Let x_0 be a guess of a root of the function f. A sequence of better approximations x_n is defined by

➡ Skip Example

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Newton's Method

Consider the case $n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$. Does 2627 factor in this form?

-					
	22.1		_ / m	0.110	5 I t
		10	- AI		

・ロン ・四 ・ ・ ヨン ・ ヨン

Newton's Method

Consider the case $n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$. Does 2627 factor in this form? Write $x = 2^{k_1}q_1$, so $2627 = (x - 1)(x + 1) = x^2 - 1$ and $x^2 - 2628 = 0$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Newton's Method

Consider the case $n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$. Does 2627 factor in this form? Write $x = 2^{k_1}q_1$, so $2627 = (x - 1)(x + 1) = x^2 - 1$ and $x^2 - 2628 = 0$. • $x_0 = 40$.

•
$$x_1 = 40 - \frac{40^2 - 2628}{2 \cdot 40} = 52.85.$$

• $x_2 = x_1 - \frac{x_1^2 - 2628}{2x_1} = 51.28782.$
• $x_3 = x_2 - \frac{x_2^2 - 2628}{2x_2} = 51.26403.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Newton's Method

Consider the case $n = (2^{k_1}q_1 - 1)(2^{k_1}q_1 + 1)$. Does 2627 factor in this form? Write $x = 2^{k_1}q_1$, so $2627 = (x - 1)(x + 1) = x^2 - 1$ and $x^2 - 2628 = 0$. • $x_0 = 40$. • $x_1 = 40 - \frac{40^2 - 2628}{2 \cdot 40} = 52.85$. • $x_2 = x_1 - \frac{x_1^2 - 2628}{2x_1} = 51.28782$. • $x_3 = x_2 - \frac{x_2^2 - 2628}{2x_2} = 51.26403$. $\sqrt{2628} = 51.26402$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Primality testing is highly applicable to cryptography.

- Primality testing is highly applicable to cryptography.
- Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.

- Primality testing is highly applicable to cryptography.
- Many popular cryptosystems, including RSA, require numerous pairs of large prime numbers for key generation.
- Factoring a large semiprime takes more time than multiplying its two prime factors.

< ロ > < 同 > < 三 > < 三

• The Baillie-PSW primality test combines a Miller-Rabin test using *a* = 2 with a strong Lucas primality test.

< ロ > < 同 > < 三 > < 三

- The Baillie-PSW primality test combines a Miller-Rabin test using *a* = 2 with a strong Lucas primality test.
- No known composite passes this test.

- The Baillie-PSW primality test combines a Miller-Rabin test using *a* = 2 with a strong Lucas primality test.
- No known composite passes this test.
- What must be true of such n?

Huge Thanks To:

- David Corwin, my mentor
- Stefan Wehmeier, for suggesting the project
- Dr. Tanya Khovanova, head mentor
- MIT PRIMES
- And of course, my parents for providing transportation and support throughout the project!